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Abstract

We explicitly evaluate the 3-D weight functions for a planar crack in an isotropic, homogeneous material; these
give the full stress intensity factors induced by a static point force applied at an arbitrary position. If we Fourier
decompose the 3-D weight functions with respect to the z variable then each Fourier mode satis®es the

homogeneous equations of elasticity (except at the crack tip) and the boundary conditions on the crack face. Each
Fourier mode diverges like rÿ1/2 near the crack tip and decays exponentially for non-zero kz. It is proved that these
necessary conditions, which hold everywhere in the elastic material excluding the crack tip, are also su�cient to
determine the 3-D weight functions. In particular, the 3-D weight functions can be calculated without considering

an explicit loading problem. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this publication, we calculate the quasi-static 3-D weight functions for a planar crack which
extends to the left xz-plane (x < 0) with crack edge on the z-axis. The weight functions, or the Greens
functions for a crack boundary problem, return the stress intensity factors (see Lawn (1993)) for a point
loading. We will also need to distinguish three di�erent cases. First, the weight functions for a planar
crack in two dimensions which shall be denoted as 2-D weight functions. Second, the surface weight
functions, that is the weight functions for forces applied only to the crack surfaces of a planar crack in
three dimensions. Third, the fully 3-D weight functions giving the stress intensity distribution due to a
(static) point force applied at an arbitrary position relative to a planar crack in three dimensions. We
present the full 3-D weight function in explicit form, not least, because we shall need the explicit
expression in a subsequent publication (Al-Falou and Ball, 2000) in which we investigate the path of a
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3-D crack near a point inhomogeneity. Furthermore, the 3-D weight for a planar crack provides the key
to the perturbative expansion of weight functions for corrugated cracks. This relates very closely to the
stability analysis of 3-D cracks. In the quasi-static case the stability of a slightly disturbed, initially
planar 3-D crack can be read o� the 3-D weight function. More details shall be given in a future paper
on this subject. Additionally, the weight function method opens the prospect of a tractable stability
analysis in the far more di�cult case of a fast moving crack.

The existence of a surface weight function for a planar crack in two dimensions comes about by an
application of Sochozki±Plemelj's formula (see the appendix on cracks in Mushkelishvili, 1963). If
g(x )=Q+iP is a balanced loading on the face of a planar crack (extending to the left x < 0) in two
dimensions, then

KI ÿ iKII � 2������
2p
p

i

�0
ÿ1

dx
g�x��������ÿxp : �1�

In this context, balanced loading means that the loading Q+iP on the upper crack face y = 0+ is
balanced by an opposite loading ÿ(Q+iP ) on the lower face y = 0ÿ. Bueckner (1970) has generalised
the particular surface weight function in Eq. (1) to the full two-dimensional weight function (including
other crack geometries). Bueckner and, later, Rice (1972) also pointed out that the full 2-D weight
function satis®es the homogeneous equations of linear elasticity (everywhere except at the crack tip) and
that the stress which it produces requires no body forces or boundary tractions for their equilibrium.
We shall come back to this important feature of the 2-D and 3-D weight functions in the last section.

In a more recent publication, Bueckner also calculated the 3-D weight functions for a semi-in®nite
and a penny-shaped crack (Bueckner, 1987). An explicit form of the weight function is given for a point
force acting on the crack surface. In our survey of previous work on weight functions we also refer the
reader to Willis and Movchan who present a calculation for the 3-D dynamical weight functions which,
of course, implies the quasi-static weight functions as a special case (Willis and Movchan, 1995).
However, both authors state the weight functions only implicitly in terms of a convolution where each
component of the convolution is given in integral form. In our computation of the 3-D weight functions
we use an existing result on the surface weight function and a classical LEFM trick, that is, we can add
a regular stress ®eld without e�ecting the singular stress (if the boundary conditions are preserved). This
leads to a signi®cant simpli®cation of our mathematical analysis in comparison with Bueckner's.

2. The surface weight functions

In our evaluation of the 3-D weight functions, we shall use an existing result on the surface weight
function in three dimensions (Sih, 1973). The surface weight functions W return the stress intensity
factors for a balanced point force (Q,P,R ) at (ÿx ',0,z '), that is, a pair of point forces where (Q,P,R ) is
applied at (ÿx ',0+,z ') on the upper crack face and (ÿQ,ÿP,ÿR ) is applied at (ÿx ',0ÿ,z ') on the lower
crack face (Fig. 1). Unfortunately, there are two sign errors in the formula for the weight functions in
the handbook by Sih (1973), page 3.2.7±2. The following text should be read in conjunction with Fig. 2.

First, we consider the contribution to the mode II stress intensity from a balanced point force (Q,0,R )
at (ÿa,0,0) (see above for the de®nition of balanced point force). If only a balanced point force (Q,0,0)
is applied [Fig. 2(a)] we obtain a positive contribution to KII, which is in agreement with standard
notations for the mode II stress intensity factor (Lawn, 1993). We now apply a balanced point force
(0,0,R ) at (ÿa,0,0) [Fig. 2(b)] which displaces the upper crack face in the positive z direction and the
lower in the negative z direction, respectively. As a result of this shearing of the crack faces, we obtain a
displacement on the upper crack face whose x-component is positive if z is positive and negative for
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negative z. This situation is reversed on the lower crack face. For positive z the displacement
con®guration is in agreement with the situation in Fig. 2(a) and, hence, the Q and R terms in the mode
II weight function have the same sign for positive z. Note that the sign in Sih's handbook is wrong in
this point.

Similarly, we obtain the proper signs for the mode III surface weight function. Thus, the corrected
stress intensity factors (Sih, 1973) at (0,0,Z ) due to a pair of opposite point forces, i.e., (Q,P,R ) applied
at (x ',0+,z ') on the upper crack face and (ÿQ,ÿP,ÿR ) applied at (x ',0ÿ,z ') on the lower crack face (x '
is negative here), are given by

KI�x 0,z 0 ÿ Z � �WI�x 0,z 0 ÿ Z � � �Q,P,R� � PY�ÿx 0 �
������������������
2p�ÿx 0 �p
p2

1

x 0 2 � �z 0 ÿ Z �2 , �2�

KII�x 0,z 0 ÿ Z � �WII�x 0,z 0 ÿ Z � � �Q,P,R�

� QY�ÿx 0 �
������������������
2p�ÿx 0 �p
p2

1

x 0 2 � �z 0 ÿ Z � 2
"
1� 2n

2ÿ n
x 0 2 ÿ �z 0 ÿ Z �2
x 0 2 � �z 0 ÿ Z �2

#

ÿ RY�ÿx 0 �2�ÿx
0 � ������������������

2p�ÿx 0 �p
p2

2n
2ÿ n

z 0 ÿ Z

�x 0 2 � �z 0 ÿ Z �2� 2 �3�

Fig. 1. Surface point forces for a planar crack in three dimensions.

Fig. 2. Displacement ®elds for a balanced point force acting on the crack surface. The solid arrows show the displacements on the

upper crack surface and the thin arrows on the lower crack face, respectively (note that the arrows do not show the components of

the point force). In (a) the balanced point force points only in the x-direction, in (b) it points only in the z-direction (see also for

the convention of the Q and R components of the point force).

A.A. Al-Falou, R.C. Ball / International Journal of Solids and Structures 37 (2000) 5079±5096 5081



and

KIII�x 0,z 0 ÿ Z � �WIII�x 0,z 0 ÿ Z � � �Q,P,R�

� RY�ÿx 0 �
������������������
2p�ÿx 0 �p
p2

1

x 0 2 � �z 0 ÿ Z �2
"
1ÿ 2n

2ÿ n
x 0 2 ÿ �z 0 ÿ Z �2
x 0 2 � �z 0 ÿ Z �2

#

ÿQY�ÿx 0 �2�ÿx
0 � ������������������

2p�ÿx 0 �p
p2

2n
2ÿ n

z 0 ÿ Z

�x 0 2 � �z 0 ÿ Z �2� 2 , �4�

where Y(x ) is the theta function. Eqs. (2)±(4) de®ne the surface weight functions WI(x ',z 'ÿZ ),
WII(x ',z 'ÿZ ) and WIII(x ',z 'ÿZ ). It might be more intuitive to express the weight functions in terms of
the variable Zÿz ' but in the following we need to evaluate an integral over x ',z '. This integral
conveniently becomes a convolution integral if the x ' and z ' variables occur with the same sign. Later
we shall need the Fourier transforms (with respect to z 'ÿZ ) of the surface weight functions in Eqs. (2)±
(4). These can be obtained by contour integration in the complex plane and are given by

ŴI�kx,kz� �
����������
2jkzj

p
�1ÿ ikx=jkzj�ÿ1=2�0,1,0�, �5�

ŴII�kx,kz� �
����������
2jkzj

p �
�1ÿ ikx=jkzj�ÿ1=2 � n

2ÿ n
�1ÿ ikx=jkzj�ÿ3=2,0,i sign�kz� n

2ÿ n

� �1ÿ ikx=jkzj�ÿ3=2
� �6�

and

ŴIII�kx,kz� �
����������
2jkzj

p �
i sign�kz� n

2ÿ n
�1ÿ ikx=jkzj�ÿ3=2,0,�1ÿ ikx=jkzj�ÿ1=2 ÿ n

2ÿ n

� �1ÿ ikx=jkzj�ÿ3=2
�
� i sign�kz�

( ����������
2jkzj
p

�1ÿ ikx=jkzj�1=2
�1,0,i sign�kz�� ÿ ŴII�kx,kz�

)
:

�7�

Fig. 3. Surface tractions due to a volume point force f:
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3. The Fourier transformed 3-D weight function for a planar crack

On the left hand side of Fig. 3, we see the basic problem in this publication. A quasi static planar
crack extends to the left half plane in an in®nite, isotropic and homogeneous linear elastic material. A
volume force f is applied at the point (x0,y0,z0). What are the induced singular stress ®elds? On the right
hand side, the strategy to solve the problem is sketched. First, we evaluate the regular stress ®elds due
to the point force as if there were no crack in the material. Second, we add the planar crack. The
regular stress ®elds yield a balanced non-zero loading on the crack surface. In order to satisfy the
boundary conditions on the crack faces, that is, zero tractions, we need to match this loading by a
counter surface loading. We obtain the stress intensity factors generated by the counter tractions from
the convolution integral of the surface loading and the surface weight function. This convolution
integral is most conveniently evaluated in Fourier transformed coordinates. Note that have also added a
table of symbols and notation in Appendix A.

All the steps in the following are given for the mode II weight function. The mode I and mode III
weight functions are obtained in the same way (replace the index II by I or III). We are given a point
volume force fd(x 'ÿx) at x in an in®nite, isotropic, homogeneous elastic material. Our ansatz for the
total stress ®eld s

total
is

s
total
� s

regular
� s

s
, �8�

where s
regular

is the (known) regular stress ®eld for a point force in the absence of a crack and s
s
is the

remainder, whose singular part we want to calculate. The corresponding boundary conditions on the
crack surface are

0 � s
total
� n � s

regular
� n� s

s
� n, �9�

where n is the outer normal to the crack face. The last equation tells us that we must calculate the stress
intensity factor generated by the tractions ÿs

regular
� n on the crack surface. Note, only s

s
contains the

singular stress.
First, we need to state the regular stress in the absence of a crack. Let G be the Green function for an

in®nite linear elastic material. By de®nition of this Green function, G, the displacement ®eld u is given
by

u�x 0 � � G�x 0 ÿ x� � f �10�

and the corresponding stress tensor for the point volume force fd(x 'ÿx) is s(x 'ÿx)�f, where
s�x 0 ÿ x� � C:r0 � G�x 0 ÿ x�: �11�

The components of the tensor of elastic constants C are given by

Cijkl � ldijdkl � m�dikdjl � dildjk�: �12�
We now place the crack on the left half of the xz plane (x < 0, y = 0). The tractions of the regular

stress ®eld on the crack face are given by

t�x 0,0,z 0,x� �
�
s��x 0,0,z 0 � ÿ x� � f

�
� n, �13�

where n is the normal vector out of the crack surface.
This brings us to the second step in which the loading from the regular stress ®elds must be matched
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by a counter surface loading. According to Eq. (9), the stress intensity factors are obtained from
convolution integrals of the negative loading in Eq. (13) and the surface weight functions. The stress
intensity factor KII for a point force fd(x 'ÿx) is given by the mode II surface weight function WII,

KII�Z,x,y,z� �
�
S

dx 0 dz 0WII�x 0,z 0 ÿ Z � � ÿÿ t�x 0,z 0,x��, �14�

where S denotes the fracture surface. The last equation, together with Eq. (13), implicitly gives the 3-D
weight function because, for an arbitrary volume force f(x,y,z ), the mode II stress intensity factor is
obtained from

KII�Z � �
�
O

d 3x GII�x,y,zÿ Z � � f�x,y,z�: �15�

Note that the regular stress ®elds automatically provide balanced tractions on the crack face. We
®nally obtain the 3-D weight function for mode II GII by setting the (balanced) loading from Eq. (13)
into Eq. (14),

GII�Z,x,y,z� � ÿ
�1
ÿ1

dx 0
�1
ÿ1

dz 0WII�x 0,z 0 ÿ Z � � s�x 0 ÿ x,ÿ y,z 0 ÿ z� � ÿÿ êy
�
, �16�

where ÿêy � �0,ÿ 1,0� is the outer normal to the upper crack face. E�ectively, the x '-integral in Eq. (16)
reduces to an integral from ÿ1 to 0, since the surface weight functions are multiplied with Y(ÿx ').
Noting that s(x 'ÿx,ÿy,z 'ÿz )=ÿs(xÿx ',y,zÿz ') and changing the variable of z ' integration, we can
rewrite Eq. (16) as

GII�Z,x,y,z� � ÿ
�1
ÿ1

dx 0
�1
ÿ1

dz 0WII�x 0,z 0 � � s�xÿ x 0,y,�zÿ Z � ÿ z 0 � � êy: �17�

Equivalent formulae hold for mode I and mode III. Eq. (17) is the central equation in this section.
We note that the 3-D mode II weight function is a convolution integral, which suggests that it is more
convenient to work with the Fourier transformed functions. This transforms (17) into

ĜII�kx,ky,kz� � ÿŴII�kx,kz� � ŝ�kx,ky,kz� � êy, �18�

where the Fourier transform in kz is taken with respect to zÿZ.
We shall ®rst determine Ĝ�kx,ky,kz� from ŴII�kx,kz� and ŝ�kx,ky,kz� and then perform the back

Fourier transform. This rather technical calculation is given for the mode II weight function
ĜII�kx,ky,kz� in Appendix B in detail; the other two weight functions are obtained in a similar way and
only their ®nal form shall be given for the sake of completeness.

In the ®nal result (Eq. (58) in Appendix B), we express the real space 3-D weight function GII(x,y,kz )
(the z dependence remains Fourier transformed) in terms of a di�erential operator acting on a
generating integral,

GII,n�x,y,kz� �
����������
2jkzj

p �
1

2

1ÿ 2n
1ÿ n

�
n

2ÿ n
ÿ @x

�
d2n ÿ y

2

1

1ÿ n

�
n

2ÿ n
ÿ @x

�
@n ÿ @ yd1n

� 2n
2ÿ n

@f�d1n � i sign kzd3n�
�

1

�2p�2
�1
ÿ1

dkx dkye
ikxxeikyy

1

�1� k 2� ���������������
1ÿ ikx
p

n � 1,2,3:

�19�
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Here f is the angle in the x,y plane. Note that @3=i sign kz, and also that in Eqs. (19) and (20),
the variables are dimensionless, as the old variables were replaced by dimensionless variables
through division by |kz|, that is, kx/|kz| 4 kx, ky/|kz| 4 ky, kz/|kz| 4 k3 and x|kz| 4 x, y|kz| 4 y
(see also Appendix B). It is shown in Appendix C that the generating integral in Eq. (19) is equal
to

1

�2p�2
�1
ÿ1

dkxdkye
ikxxeikyy

1

�1� k2� ���������������
1ÿ ikx
p � er cos f

2
���
2
p erfc

� �����
2r
p

cos
f
2

�
: �20�

4. The real space mode II 3-D weight function for a planar crack

The derivatives in Eq. (19) were calculated with Mathematica (Wolfram Research, 1995). In the
®nal result, we also reestablish the old variables x 4 x|kz|, etc., from the dimensionless variables. We
®nally obtain the 3-D weight function for mode II, where the z-dependence remains Fourier
transformed:

GII,x�x,y,kz� �
�������
jkzj

p 24ÿ
8ÿ 12n� 4n2 � �2ÿ n��cos f� cos 2f� � rjkzj�ÿ2� 11nÿ 8n2

� 2n cos f� �2ÿ n�cos 2f�
� sin

f
2

4�1ÿ n��2ÿ n�
eÿrjkzj��������������
2prjkzj
p

� 1ÿ 2n
2ÿ n

jkzjr sin f
2

erjkzjcos ferfc

� ������������
2rjkzj

p
cos

f
2

�35
, �21�

GII,y�x,y,kz� �
�������
jkzj

p 24ÿ
4ÿ 10n� 4n2 � �2ÿ n��cos fÿ cos 2f� � rjkzj�ÿ2� 3n� 4�1ÿ n�

� cos fÿ �2ÿ n�cos 2f�
� cos

f
2

4�1ÿ n��2ÿ n�
eÿrjkzj��������������
2prjkzj
p ÿ 1ÿ 2n

2�2ÿ n�e
rjkzjcos f

� erfc

� ������������
2rjkzj

p
cos

f
2

�35
�22�

and
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GII,z�x,y,kz� � i sign�kz�
�������
jkzj

p
264
�
ÿ 1� 5

2
nÿ 2n2 ÿ 2ÿ n

2
cos f

�
sin

f
2

�1ÿ n��2ÿ n�

����������
rjkzj
2p

r
eÿrjkzj

� 1ÿ 2n
2ÿ n

rjkzjsin f
2

erjkzjcos ferfc

� ������������
2rjkzj

p
cos

f
2

�375
, �23�

where x=r cos f and y=r sin f. The weight functions GII,z (x0,y0,kz ), as stated above, return the
Fourier transformed mode II stress intensity factor KII(kz ) for a volume force of the form f�x�� fd�xÿ
x0�d� yÿ y0�eikzz: Fully in real space, GII is given by

GII�Z,x,y,z� �
1

2p

�1
ÿ1

dkzGII�x,y,kz�eikz�zÿZ �, �24�

where the variable kz in GII(x,y,kz ) indicates that here GII is Fourier transformed in kz. Furthermore, it
is readily veri®ed that for a balanced force on the crack faces, we recover the known surface weight
function from the 3-D weight function in Eqs. (21)±(23). We have

GII�r,f � p,kz� ÿ GII�r,f � ÿp,kz� �WII�x,kz�, �25�
where WII(x,kz ) is the surface weight function for a balanced point force.

5. The mode I and mode III 3-D weight functions for a planar crack

The 3-D weight functions for mode I and mode III are obtained in a similar way. The result for mode
I is

GI,x�x,y,kz� �
�������
jkzj

p
264 1ÿ 2n
4�1ÿ n�e

rjkzjcos ferfc

� ������������
2rjkzj

p
cos

f
2

�
� eÿrjkzj

cos

�
f
2

�
4�1ÿ n� ��������������

2prjkzj
p �ÿ2� 4n

� cos fÿ cos�2f� � rjkzj�ÿ1� 2 cos fÿ cos�2f���

375
, �26�

GI,y�x,y,kz� �
�������
jkzj

p
eÿrjkzj

sin
f
2

4�1ÿ n� ��������������
2prjkzj
p �4ÿ 4nÿ cos fÿ cos�2f� � rjkzj�1ÿ cos�2f��� �27�

and

GI,z�x,y,kz� � i sign�kz�
�������
jkzj

p 24ÿsin
f
2

sin f

2�1ÿ n�

����������
rjkzj
2p

r
eÿrjkzj � �1ÿ 2n�

4�1ÿ n�e
rjkzjcos ferfc

� ������������
2rjkzj

p
cos

f
2

�35
, �28�

and, for mode III, we obtain
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GIII,x�x,y,kz� � ÿi sign�kz�
�������
jkzj

p
264 ���������

rjkzj
p �1ÿ 2n� cos�f��sin

�
f
2

�
�2ÿ n� ������

2p
p eÿrjkzj

ÿ
erjkzjcos�f��1ÿ 2n�rjkzjerfc

� ������������
2rjkzj
p

cos

�
f
2

��
sin�f�

2�2ÿ n�

375
, �29�

GIII,y�x,y,kz� � ÿi sign�kz�
�������
jkzj

p
264

����
2

p

r ���������
rjkzj
p

cos

�
f
2

�
sin

�
f
2

�2

�2ÿ n� eÿrjkzj

�
erjkzjcos�f��1ÿ 2n�erfc

� ������������
2rjkzj
p

cos

�
f
2

��
2�2ÿ n�

375 �30�

and

GIII,z�x,y,kz� �
�������
jkzj

p
264 �2ÿ nÿ 2nrjkzj�sin

�
f
2

�
�2ÿ n� ������

2p
p ���������

rjkzj
p eÿrjkzj

ÿ
erjkzjcos�f��1ÿ 2n�rjkzjerfc

� ������������
2rjkzj
p

cos

�
f
2

��
sin�f�

2�2ÿ n�

375
: �31�

6. Properties and uniqueness of the 3-D weight function

We now shall further explore the properties of the 3-D weight function for a planar crack. We shall
see that we can uniquely determine the 3-D weight function without considering an explicit loading
problem. This opens another approach to the evaluation of weight functions (from our calculation)
which proves particularly valuable in the more di�cult dynamical case (this work is in progress at the
moment). It also provides a check on the 3-D weight functions themselves. Furthermore, we shall link
the results in this thesis to a former calculation of Ball and Larralde (1995). We shall see in the
following that the mode I and mode II weight functions are implicitly contained in their calculation.

First, we investigate the necessary properties of the weight function. We then shall see that these
properties are also su�cient to establish uniqueness of the weight function, and hence these properties
determine the weight function uniquely.

In the following, we suppose that there exist several 3-D weight functions for a planar crack J and we
ask about their common properties. First, we observe that the 3-D weight function satis®es the
homogeneous equations of elasticity and the boundary conditions on the crack surface. Strictly, the 3-D
weight function has to satisfy the adjoint equations of linear homogeneous elasticity. However, the
linear elasticity operator is self-adjoint (see Appendix D). We then have to solve the displacement ®eld
in the presence of a volume force f at x0,
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ÿm
�
D� 1

1ÿ 2n
r div

�
u � d�xÿ x0�f or Eu � d�xÿ x0�f, �32�

where E is the operator of linear elasticity for an isotropic, homogeneous material, given in the left
equation. The displacement u must also satisfy the boundary conditions on the crack surface, i.e.,

s�u� � n � 0 on the crack surface: �33�
Indeed, in this way, Kassir and Sih calculated their surface weight function.
Although Eq. (32) might suggest that u is a function of xÿx0, this is not the case because the

boundary conditions in Eq. (33) are not translationally invariant. As we shall see in the following, we
nevertheless have

u�x,x0� � u�x0,x�, �34�
which we now show follows from the self-adjointness of the operator E of linear elasticity (see Appendix
D for a proof of the self-adjointness of E ). Let O be R3 excluding the left xz-plane (i.e., the crack
surface), that is, the domain occupied by the elastic material. We de®ne a scalar product for functions
on O by

hf,gi2 �
�
O

d 3x f�x� � g�x�: �35�

Furthermore, let u(x,x0) and u(x,x1) be two solutions of Eq. (33) with x0 replaced by x1 in the latter.
By de®nition of the self-adjointness of the operator E, we have

hu�x,x0�,Eu�x,x1�i2 � hEu�x,x0�,u�x,x1�i2, �36�
hence,

hu�x,x0�,d�xÿ x1�fi2 � hd�xÿ x0�f,u�x,x1�i2, �37�

hence,

u�x1,x0� � f � u�x0,x1� � f for all f, �38�

which proves Eq. (34).
Assuming the displacement u and the corresponding stress ®eld s(x,x ') have been obtained, we can

extract the 3-D weight functions by taking appropriate limits in x, e.g.,

KII�x0,f� � lim
x40�

��������
2px
p

sr,f�x,x0,f�jy�0 � lim
x40�

��������
2px
p

sr,f�x0,x,f�jy�0: �39�

The last equation holds since u(x,x0)=u(x0,x). We conclude that KII(x0,f), and thus each component
of the 3-D weight function, satisfy the equations of elasticity in Eq. (32) and the boundary conditions,
where derivatives are taken with respect to x0.

Second, we exploit the fact that the problem of a planar crack in an in®nite, isotropic, homogeneous
material has only two variables with the dimension of length. A 3-D weight function J(zÿZ,r,f ) has
dimension length `ÿ3/2. If we Fourier transform it with respect to zÿZ, each Fourier component
J(kz,r,f ) has dimension length `ÿ1/2 (exceptionally, we denote the real space function and the Fourier
transformed function by the same symbol; distinction is made by the dependence on kz ). However, the
only quantities with dimension length are the radial coordinate r and the inverse of the wavenumber kz.
Considering the dimension of J(kz,r,f ), the only possible form it can have is
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J�kz,r,f� �
�������
jkzj

p
J1�r � kz,f�: �40�

It is reasonable to assume that the weight function exists for kz=0 and is non-zero. Indeed, this is the
two-dimensional weight function which can be obtained in a straightforward calculation. We then
deduce two results from Eq. (40). First, the highest order divergence near the crack tip is 1/Zr, and
second, the 1/Zr term does not depend on kz. In other words, the 1/Zr divergence in J(kz,r,f ) is the
same for all kz and equals J0(r,f )=J(0,r,f ). In summary, we have the following properties of 3-D
weight functions for a planar crack in an in®nite linear elastic medium

1. Gkz
satis®es the homogeneous equations of elasticity and the boundary conditions on the crack face

for all k_z.
2. Gkz

diverges like rÿ1/2 near r=0 independently of kz.
3. The divergent part of Gkz

equals the (kz-independent) 2-D weight function for all kz.

So far we have had to assume that there might exist several weight functions. We now want to show
uniqueness. In the following, we only admit weight functions J(kz,r,f ) that diverge like 1/Zr near r= 0
and fall o� exponentially as r 41 for kz$0 (indeed, we do not need exponential decay, as we shall
see). Furthermore, we assume that two possibly di�erent Fourier transformed 3-D weight functions
J1(kz,r,f ) and J2(kz,r,f ) are equal for kz=0, i.e. J1(0,r,f )=J2(0,r,f ), which implies their divergent parts
are the same. Then we de®ne

F�x� � ÿJ1�kz,r,f� ÿ J2�kz,r,f�
�
eikzz: �41�

Note that F(x) no longer diverges near r= 0 and, more importantly, it has ®nite elastic energy. Note
also that F(x) satis®es the equations of linear elasticity and the boundary conditions on the crack face
since J1(kz,r,f ) and J2(kz,r,f ) have these properties. To make further progress, we use the elastic energy
in order to apply a norm argument. We de®ne

hu,uiE: �
�
O

d 3x�ru�:C:�ru� �
�
O

d 3x�ru�:s�u�, �42�

where C is the tensor of elastic constants (see Eq. (11)), s[u] is the stress tensor generated by u and O is
the region occupied by the elastic material. Inserting F in Eq. (42), we obtain

hF,FiE �
�
OR

d 3x�r � �F � s�F�� ÿ F � �r � s�F���, �43�

hF,FiE �
�
@OR

dS � s�F� � F �44�

and

hF,FiE �
�
GR

dS � s�F� � F40 as R41, �45�

where GR is the circle with radius R. The contour @OR is shown in Fig. 4. Eq. (44) holds since F satis®es
the homogeneous equations of elasticity. In Eq. (45), we have used the fact that F satis®es the boundary
conditions on the crack surface. The limit is zero since we have assumed that both weight functions
decay exponentially for k$0 as r41. As mentioned above, it would be su�cient to require decay like
rÿa where a>1/2. In any case, we have that hF,FiE=0.

We now want to bound the elastic energy hu,uiE. The elastic energy can be rewritten in terms of the
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strain tensor e=1/2(Hu+(Hu )T) as

hu,uiE �
�
O

d 3x
�
l tr�e�u��tr�e�u�� � 2me�u�:e�u�	, �46�

which is non-negative and zero only if e[u ] is zero almost everywhere. Since hF,FiE � 0, we deduce that
e[F ]=0 almost everywhere. It follows (for example, see page 293 in Ciarlet, 1993) that

F � a� b ^ x: �47�
Remembering that F(x ) decays to zero as x 4 1, we conclude that F is identically zero. Hence,

J1(kz,r,f )=J2(kz,r,f ) provided that the rÿ1/2 terms of weight function 1 and 2 are equal.
We can summarise our results as follows. The 3-D weight functions for a planar crack in an isotropic,

homogeneous material are uniquely determined (up to a constant pre factor) by the following
requirements on its Fourier components Gkz

with respect to z:

1. Gkz
satis®es the homogeneous equations of elasticity and the boundary conditions on the crack face

for all kz.
2. Gkz

decays exponentially for r41 for kz$0.
3. Gkz

diverges like rÿ1/2 near r=0 independently of kz.
4. The divergent part of Gkz

, i.e., G0, is uniquely given.

We have now reduced the uniqueness of the 3-D weight functions to the uniqueness of the 2-D weight
functions. Let us assume that we have evaluated functions Gkz

which satisfy conditions 1 to 3. To pick
out the mode II 3-D weight function GII,kz

, for example, we compare the divergent part with the known
2-D mode II weight function in the x,y plane (kz=0). Note that no point force occurs explicitly
anywhere in the conditions 1 to 3. Note also that we mentioned in the beginning of this chapter that the
3-D weight functions satisfy the ®rst condition above. In other words, the 3-D weight function can be
calculated uniquely on the basis of conditions 1 to 3 without taking into consideration any forces or
tractions. This fact opens di�erent approach in the calculation of the 3-D weight function from the one
presented in this paper.

What happens if we work purely on the basis of conditions 1 to 3, i.e., the 2-D weight functions in
the x,y plane are not given? Then Gkz

can be uniquely determined even if we work only with the
homogeneous equations of linear elasticity (without considering an explicit loading problem).

The rÿ1/2 term equals the Fourier mode G0(r,f ) for kz=0, which of course satis®es the equation of

Fig. 4. Region and contour of integration (R41).
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elasticity and the boundary conditions. However, there is no z dependence and we know the r
dependence of G0(r,f ), i.e., G0(r,f )=j(f )/Zr. We also know (Freund, 1990) that a solution G0(r,f ) of
the two-dimensional linear elastic equations with zero forces on the crack surface and rÿ1/2 dependence
is a linear combination of the form aI/ZrjI(f )+aII/ZrjII(f )+aIII/ZrjIII(f ), where jI, jII and jIII are the
angular parts of the 2-D weight functions.

On the other hand, any function Gkz
which meets the requirements 1 to 3 is uniquely determined by

the divergent part G0. With the previous statement, we conclude that any such function is a linear
combination of the form

Gkz
� aIGI,kz

� aIIGII,kz
� aIIIGIII,kz

, �48�
where aI, aII and aIII are real numbers and GI,kz

, GII,kz
and GIII,kz

are the 3-D weight functions for modes
I to III. We can extract a single mode 3-D weight function (up to constant pre factors) out of Eq. (48)
on the basis of symmetry arguments. For example, the ®rst component of GI,kz

is even in y and z, the
second component is odd in y and even in z and the third component is even in y and odd in z. The
remaining real pre factor can be ®xed by applying the weight function to a loading with known stress
intensity factors or by comparison with the 2-D weight function.

The preceding discussion links the calculation of the 3-D weight functions to a result obtained by Ball
and Larralde (1995), who investigated the stability of slow cracks under mode I loading. For this
purpose, they expanded the perturbed stress ®eld in terms of the unperturbed stress ®eld plus a ®rst
order contribution s

1
�x� which had to be determined, i.e.,

s
ÿ
x� êzhkz �x�eikzz

�
� s

0
�x� � hkz �x�eikzz�êz � r�s0�x� � s

1
�x�, �49�

where êzhkz �x�eikzz denotes the (small) deviation of the crack surface from planarity. It is clear that s
1
�x�

diverges like rÿ3/2 and the associated displacement ®eld u1(x) like rÿ1/2. Their ®rst order displacement
®eld satis®es the equations of elasticity and the boundary conditions. Furthermore, the Fourier
components fall o� exponentially for kz$0. Hence, the 3-D weight functions are implicitly contained in
the ®rst order displacement ®eld. The single components for mode I and mode II can be extracted by
symmetry arguments and yield the same 3-D weight functions as given here by Eqs. (26)±(28) and Eqs.
(21)±(23).

7. Conclusions

We have calculated the full 3-D weight functions for mode I, mode II and mode III for a quasi-static
planar crack using an existing result on the surface weight functions. From another point of view, we
have shown that weight functions are governed by uniqueness requirements: First, Gkz

has to satisfy the
homogeneous equations of elasticity and the boundary conditions on the crack face for all kz. Second,
Gkz

needs to decay exponentially for r 41 for kz$0. Finally, Gkz
has to diverge like 1/Zr near r = 0

independently of kz, and this divergent part is uniquely given (by the 2-D weight function). The ®rst
condition is long established (Bueckner, 1970; Rice, 1972); the second is required for any physically
sensible solution; the third we have demonstrated. Hence, we can determine a weight function by solving
the homogeneous linear elastic equations of elasticity with zero boundary tractions and the additional
requirement that the highest order divergence is 1/Zr near the crack tip. Using this method, it is
possible to circumvent the evaluation of a more di�cult explicit loading problem.
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Appendix A. Nomenclature

C tensor of elastic constants, e.g., for an isotropic material with components
Cijkl=ldijdkl+m(dikdjl+dildjk )

E operator of linear elasticity for an isotropic, homogeneous material, E=ÿH�C:H
erf(x ), erfc(x ) error function and complementary error function
G Greens function for the displacement ®eld in an in®nite linear elastic isotropic and

homogeneous material
êx, êy, êz Cartesian vectors, êx � �1,0,0�, êy � �0,1,0�, êz � �0,0,1�
e[u ] strain tensor generated by u

f̂ Fourier transform of the function f
GI, GII, GIII three-dimensional weight function for mode I, mode II and mode III
n normal vector
n Poisson's ratio
KI, KII, KIII stress intensity factors for mode I, mode II and mode III
l, m Lame coe�cients
O domain occupied by the elastic material
@O boundary of the domain O
f angle in the x,y plane, x=r cos f, y=r sin f
s(x ) stress tensor at x
WI, WII, WIII surface weight function for mode I, mode II and mode III in three dimensions
02 indicates the positive or negative limit to zero, usually used in the context of the upper

( y=0+) or lower crack face ( y=0ÿ)
� multiplication
U curl
h.,.i2 L 2 scalar product de®ned in Eq. (35)
h.,.iE scalar product de®ned in Eq. (42)

The Fourier transform and the back Fourier transform are de®ned as

f �x� � 1

2p

�1
ÿ1

dkeikxf̂�k�

and

f̂�k� �
�1
ÿ1

dxeÿikxf̂�x� �50�

throughout this thesis. Occasionally, the Fourier transform is indicated by the argument instead of the
hat.
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Appendix B. Evaluation of the Fourier transformed 3-D weight function and the back Fourier
transformation

We start from Eq. (18), stating the Fourier transformed mode II 3-D weight function in terms of the
known Fourier transformed surface weight function and the Fourier transformed stress ®eld for a point
force,

ĜII�kx,ky,kz� � ÿŴII�kx,kz� � ŝ�kx,ky,kz� � êy: �51�

The Fourier transform of the Green function of an in®nite isotropic homogeneous linear elastic
material is

Ĝij � 1

m
1

k2
z � k2

�
dij ÿ 1

2�1ÿ n�
kikj

k 2
z � k2

�
�i,j � x,y,z or 1,2,3�, �52�

where k 2 � k2
x � k2

y : From Eq. (11), namely sijn=Cijkl@kGln, we obtain

ŝijn � i
1

k2
z � k2

�
n

1ÿ n
kndij � kidjn � kjdin ÿ 1

1ÿ n
kikjkn
k2
z � k2

�
: �53�

In particular, the Fourier transform ŝ�kx,ky,kz� � êy is

ŝi2n � i
1

k2
z � k2

�
n

1ÿ n
kndi2 � kid2n � kydin ÿ 1

1ÿ n
kikykn

k2
z � k2

�
: �54�

The Fourier transformed mode II surface weight function is given in Eq. (6)

ŴII�kx,kz� �
����������
2jkzj

p �
�1ÿ ikx=jkzj�ÿ1=2 � n

2ÿ n
�1ÿ ikx=jkzj�ÿ3=2,0,

i sign�kz� n
2ÿ n

�1ÿ ikx=jkzj�ÿ3=2
�
:

�55�

Eqs. (54) and (55) are set into Eq. (51) in order to yield the Fourier transformed mode II 3-D weight
function,

ĜII,n�kx,ky,kz� � ÿi
����������
2jkzj
p

k2
z � k2

8>><>>:
�
kxd2n � kyd1n ÿ 1

1ÿ n
kxkykn

k2
z � k2

�

�

0BB@ 1������������������
1ÿ i

kx
jkzj

r �
n

2ÿ n�
1ÿ i

kx
jkzj

�3=2

1CCA�
�
kzd2n � kyd3n ÿ 1

1ÿ n
kzkykn
k2
z � k2

�

� i sign�kz�
n

2ÿ n�
1ÿ i

kx
jkzj

�3=2

9>>=>>;:

�56�
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The remaining work consists of back Fourier transforming this expression in order to obtain
GII(x,y,kz ) (we drop the hat here although the 3-D weight function remains Fourier transformed
in kz ).

The main steps of the back Fourier transformation in kx and ky will be shown for the mode II weight
function ĜII�kx,ky,kz�: The other two weight functions are obtained in a similar way and only their ®nal
form shall be given for the sake of completeness.

First, we observe that it is convenient to replace the old variables by dimensionless variables through
division by |kz|, that is, kx/|kz| 4 kx, ky/|kz| 4 ky, kz/|kz| 4 k3 and x|kz| 4 x, y|kz| 4 y. Second, the
terms (1ÿikx/|kz|)ÿ3/2 are reduced to (1ÿikx/|kz|)ÿ1/2 by multiplication with 1ÿikx/|kz|. Furthermore, we
observe that integration by parts with respect to ky turns the terms

kykn

�1�k 2� 2 into i y2
kn

1�k 2 � 1
2

s2n
1�k 2 : Thus, we

obtain

GII,n�x,y,kz� � ÿi
����������
2jkzj
p

�2p�2
�1
ÿ1

dkx dkye
ikxxeikyy

1

1� k2

(�
1

2

1ÿ 2n
1ÿ n

�
kx � i

n
2ÿ n

�
d2n ÿ iy

2

1

1ÿ n

�
�
kx � i

n
2ÿ n

�
kn � kyd1n

�
1���������������

1ÿ ikx
p � n

2ÿ n
ky
�
d1n � i sign kzd3n

� 1

�1ÿ ikx�3=2
)
:

�57�

Integration by parts ®rst with respect to kx and then with respect to ky changes the term
ky

�1�k 2��1ÿikx�3=2

into ÿ2 xkyÿykx
�1�k 2��1ÿikx�1=2 � 2i

@ f
�1�k 2��1ÿikx�1=2 : Here f is the angle in the x,y plane, i.e., x �

������
x 2
p
� y2 cos f and

y �
������
x 2
p
�y2 sin f: We obtain

GII,n�x,y,kz� �
����������
2jkzj

p �
1

2

1ÿ 2n
1ÿ n

�
n

2ÿ n
ÿ @x

�
d2n ÿ y

2

1

1ÿ n

�
n

2ÿ n
ÿ @x

�
@n ÿ @ yd1n

� 2n
2ÿ n

@f�d1n � i sign kzd3n�
�

1

�2p�2
�1
ÿ1

dkx dkye
ikxxeikyy

1

�1� k 2� ���������������
1ÿ ikx
p : �58�

Note that @3=i sign kz.

Appendix C. The generating integral

We need to evaluate the generating integral in Eq. (58). Since this integral is not a standard integral, a
brief outline of its evaluation will be given in the following. First, integration with respect to ky (which
can be easily obtained by integration along a closed contour in the upper or lower complex plane,
depending on the sign of y ) yields

I � 1

4p

�1
ÿ1

dkxeikxxeÿjyj
��������
1�k 2

x

p 1��������������
1� k2

x

p ���������������
1ÿ ikx
p : �59�

Substitution kx=sinh u and translation of u by ip/2 gives
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I � 1

4
���
2
p

p

�1
ÿ1

due
ir sinh

�
u�i

p
2

�
cosh

�
u

2
ÿ i
jfj
2

�

� 1

4
���
2
p

p

�1
ÿ1

dueÿre
ÿ2r sinh 2

u

2
cosh

u

2
cos

f
2
� i sinh

u

2
sin

f
2

cos2
f
2
� sinh2 u

2

, �60�

where x+iy=reif. Back substitution t = sinh u/2 gives a standard integral which can be found in
Abramovitz and Stegun (1972),

I � 1

2
���
2
p

p
eÿr

�����
2r
p

cos
f
2

�1
0

dt
eÿt

2� �����
2r
p

cos
f
2

�2

�t2
� 1

2
���
2
p er cos ferfc

� �����
2r
p

cos
f
2

�
, �61�

where erfc denotes the complementary error function.

Appendix D. Self-adjointness of the operator of linear elasticity

In this section, we shall prove that the operator E of linear elasticity is self-adjoint. First, we assume
that g and f satisfy the boundary conditions on the crack surface, i.e.,

s�g� � n � 0

and

s�f� � n � 0, �62�

where n is the normal of the crack surface and s[g� is the stress ®eld generated by g, i.e., s[g]=C: Hg:
Second, we require that g and f decay su�ciently fast (or, alternatively, that g and f have compact
support). These two conditions ensure that the surface integrals in Eqs. (64) and (66) vanish. The
divergence theorem yields

hf,Egi2 �
�
O

d 3xf � �r � C:rg�, �63�

hf,Egi2 �
�
@O

dS � �C:rg� � fÿ
�
O

d 3x�rf�:C:�rg�, �64�

hf,Egi2 � ÿ
�
O

d 3x�rg�:C:�rf�, �65�

hf,Egi2 �
�
O

d 3xg � �r � C:rf� ÿ
�
@O

dS � �C:rf� � g �66�

and

hf,Egi2 � hEf,gi2: �67�
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